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TRANSFORMATIONS ON [0,1] WITH 
INFINITE INVARIANT MEASURES 

BY 

MAXIMILIAN THALER 

ABSTRACY 

Under certain regularity conditions a real transformation with indifferent fixed 
points has an infinite invariant measure equivalent to Lebesgue measure. In this 
paper several ergodic properties of such transformations are established. 

Introduction 

In i20] we studied the invariant densities of real transformations with 

indifferent fixed points. The purpose of the present paper is to give a more 

detailed analysis of the ergodic behaviour of such transformations using the 

density estimates obtained in [20] and the fact that the associated jump 

transformations satisfy R6nyi's condition. Like null recurrent Markov chains or 

inner functions of the upper half plane, transformations of this type are good 

examples to illustrate the statistical laws governing the iteration of maps 

preserving infinite measures. 

Section 1 contains the necessary definitions and notations as well as some 

general remarks on auxiliary transformations which are essential tools in our 

investigation. In section 2 we prove exactness and rational ergodicity. In section 

3 we show that for a given transformation T the class of sets with the same 

minimal wandering rate is large enough to provide an isomorphism invariant. 

We also show how to calculate the minimal wandering rate in case T admits 

expansions at the indifferent fixed points. In section 4 we deal with the problem 

of calculating the entropy of the transformations in question. At the same time 

we derive a criterion to decide whether it is finite or infinite, and an analogue to 

the Theorem of McMillan. 

1. Preliminaries 

We begin with a brief survey of those properties of induced and jump 

transformations which are of interest here using a slightly more general concept. 
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Let ( X , ~ )  be a measurable space and T:X---~X a measurable transforma- 

tion. Let A E ~,  and n :A ~ N  be a measurable map such that T"(~)(x) E A for 

every x ~ A. Then we can define a transformation TA,, :A---~A by TA.,(X)= 
T"(~)(x ). Putting 

B~ = { x E A : n ( x ) = k }  (k=>l)  

we have TA~,.(E) = U~=I(Bk O T-~E) for each E CA.  This shows Ta.. is 

measurable with respect to A n ~.  Recall the following well-known special 

cases. 

(i) Let A _C U~=~ T- 'A.  Then 

n(x)=min{n>=l:T"(x)~A} ,  x E A ,  

defines the induced transformation Ta on A (cf. [9]). 

(if) Let trl be an at most countable measurable partition of X;  let a .  be the set 

of atoms of Y i"---o' T-%, and/3 an arbitrary subset of U~=,a~ with UzE~Z = X. 
Then the transformation defined by 

n ( x ) = m i n { n > - l : x E Z E a ,  n/3}, x E X ,  

is known as the jump transformation over/3 (cf. [16]). 

(iii) Let B E ~,  U~=o T- 'B  = X, and 

n(x )= l+min{n>-O:T ' ( x )EB} ,  x ~ X .  

The transformation obtained in this way may be called the 'first passage map' 

with respect to B. It is closely related to TB (cf. [17]). 

Now let Ta.. be defined as above. Taking into account that Bk n 

T -k (E n A ) =  Bk n T-kE it is easily seen that the set E n A is invariant for 

Ta,. whenever E is invariant for T. Thus, if or is a measure on ~ such that T is 

non-singular with respect to tr and X = U~=0 T-"A (rood 0), we have: 

(1.1) 
If Ta.. is ergodic with respect to orfa n~, 

then T is ergodic with respect to m 

T - - s  ~ ~ T - k  From A,.(E) C l U k=, E, E _C A, s => 1, it follows that W n A is wandering 

for Ta,., if W is wandering for T. Hence given a measure or on ~ such that 

A = X (mod 0) we have: 

(1.2) 
If Ta,. is conservative with respect to crlan~ , 

then T is conservative with respect to or. 
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Finally, every invariant measure for TA.,, (A, n arbitrary) yields an invariant 

measure for T. To prove this, let 

D~={xEA:n(x)>=k)  (k_->l) 

and v be a measure on A O ~.  For s = - 1 ,0 ,1 ,2 , . . . ,  define the measures v, by 

the formula 

Then, 

(1.3) 

v~ = ~ v(T-~-kE n Dk), E E ~ .  
k = l  

if v is invariant for TA.,, v, is invariant for T, 

i.e. v, = v, for all s,t ~ { -  1,0,1,2, . . .} .  

This very useful formula has a very short proof. For, using DE = D~+I U Bk 
(k >= 1), we have 

v,(T-~E) = ~ v(T-'-~E n o ~ ) +  v(T-a~,.(T-'-~E A A ) ) =  v,(E) 
k = 2  

(cf. [13] for induced transformations (s =0) ,  [16] for jump transformations 

( s  = - 1 ) ) .  

Here we shall be concerned with a class of transformations T:[0,1]--~[0,1] 

specified below. In fact, these transformations as well as the auxiliary transfor- 

mations occurring in this paper will generally be defined only up to sets of 

Lebesgue measure zero. Henceforth we shall not mention this explicitly. 

Let ~1 = {B(i):i ~ I} be a collection of disjoint subintervals of [0,1], ]I I_- > 2, 
with A([0,1]\ U~E~B(i))= 0, where A denotes the Lebesgue measure on the 

o'-field ~ of Lebesgue measurable subsets of [0,1]. Then we assume: 

(1) TIBo~ is twice differentiable, and TB(i)= [0,1] for all i ~ I .  Every "B(i) 
contains exactly one fixed point xi, and the set J = {i E I :  T'(xi)= 1} is finite. 

(2) T'(x)>=p(e)>l for all x E U,~,B(i) \Uj~s(xi-e ,x~+e),  Ve >0 .  

(3) For j ~ J ,  T' is decreasing on (x~-B, xj)OB(j)  and increasing on 

(xj, x i + B ) n B ( j )  for some B > 0 .  

(4) I T"(x)l T ' ( x )  -2 is bounded on U,~rB( i ) .  

Let ~- denote the class of all such transformations and 9"R the subclass of those 

among them for which J = f~. As is well known T E 8r belongs to fiR, if and only 

if T satisfies R6nyi's condition (cf, [14]). In particular, every T ~ 8rR has a finite 
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ergodic invariant measure equivalent to A (see also Lemma 3 in section 3). 

Furthermore, it is easy to verify that ff~ is a generator for every T ~ f .  We shall 

use the following notations: 

n 

B ( k , , . . . , k , ) =  N T-'+' B(k,), 
i = l  

B, ( i )=B( i , . . . , i ) ,  i ~ I ,  
n times 

~. = { B ( k , , . . . , k . ) : ( k , , . . . , k . ) E I " } ,  

( k , , . . . , k , ) ~ I ,  n = l ,  

@. ={B.( j ) : j  EJ}, 

n = l  

As in [20], let T* denote the jump transformation over the cylinder class 

/3 = ~\  I..J~=l~, (cf. (ii)). With the nota.tions introduced above we have in this 

case 

D . =  U Z, n=>2, B,= U B(k), 
Z E @ n _  l k E l \ ]  

B. = U U B(j, . . . , . / ,k),  n =>2. 
re ]  k#j 

n - ]  

Let I* = {(k~, �9 �9 k , ) :  B(k , , . . . ,  k,) C B., n => 1}. By theorem 2 and corollary 2 

in [20], T* E fiR. In particular, 

(1.4) 
there exists a constant C such that 

ess sup ~O(kl,.. . ,  k,)(x ) <= C ess inf ~o(k~,. . . , k,)(x ) 
xE[0,]] x~[0,1] 

for all ( k , , . . . , k . ) E I "  (n => 1) of the form ( k T , ' " , k * , )  with k* E l * ,  1 =< i-< t, 

where 

d 
~o(k,,. . . , k. )(x ) = - ~  f k,,....k.(X ) 

and fk,...-,k, is the inverse of T" restricted to B(k l , . . . ,  k.). 
According to (1.3) T ~ f has an invariant measure/z  - Z. As a consequence 

of (1.1) and (1.2), 

(1.5) T is conservative and ergodic with respect to tx (A). 

It was shown in [20] that dlz/dA satisfies 

c l N  G~(x)<=-~ (x)<-c2gFj(x)  a.e. (c l , c2>0) ,  
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where 

Gj(X)=(X--Xj)(Tx--x) -1 } 

Fj(X)=(X--Xj)(X - -  ~ ( X ) )  -1 

6 , ( x )  = E ( x )  = 1 

fo rx  E B ( j ) , x #  xj, 

for x E [O,1]\B(j) .  

From ( T x - x ) ( x - ~ ( x ) )  - ' =  T'(~x) (~ between x and ~(x)) for x ~ B ( j )  it 

follows that 

l i m E ( x ) / G j ( x ) = l  for a i l j  ~ J .  
x~x i 

Using this and a continuity argument one sees that Fj(x) /Gj (x)  is bounded on 

B(])  and hence on [0, 1]. Therefore the above estimates can be written in the 

following more compact form: 

(1.6) 

d g ( x )  = h,,(x) 1-I Gj(x)  
dh j~j 

= 

jEJ 
0 <  cl < h , , / ~  = < c2< oo 

If j E J, then by condition (4) 

I T x  - x [ = �89 T"(~ )[ (x - xj)2 =< const. (x - xj)2 

in a neighbourhood of xj. This shows that the invariant measure tz is infinite for 

T E 3- \ ~ Some examples belonging to the class 3"- \ ~-R can be found in [2], 
[4], [5], [10], [12], [13], [18], [19], [20]. 

REMARKS. (i) If T' is replaced by J T'I in the assumptions for T, (1.6) remains 

true as long as T is increasing on every interval B(j) ,  j ~ J .  However,  if T is 

decreasing on B(j) ,  Gj has to be replaced by t~j, where 

Gj(x ) = (x - xj)(T2 x - x)  -~, x E B( j , j ) ,  (~j(x) = 1 elsewhere. 

The second expression has to be modified analogously. All other statements also 

hold when T is decreasing on B( j )  for some or all j E J .  

(ii) As mentioned before, the conservativity of T E i f \  3-R follows via (1.2) 

from the conservativity of T*. By the following argument it may be possible to 

prove conservativity by a short calculation, provided the invariant measure is 

known. 
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(1.7) 

PROOF. 

1, hence 

Now, 

If ~] ~(f])'(x)>=cdd'~A(x) A-a.e. ( c>0) ,  
I E J  k = l  

then T is conservative with respect to h. 

Let W ~ ~ be wandering with respect to T. Then E~=~ 1 (T -~ W) < 

l i m r . = 0  f o r t . =  ~ A(T -kW). 
n ~  k ~ n + l  

r,= A(T-k(T-"WI) > A T-k(T-"W) O U Bk(]) 
k = l  j E J  

j ~ J  = 

~cfT_.wdd'~(x)dA(x) 

= cl.~(W) for all n => 1. 

Thus,/z(W) = A(W) = 0. 

The following well-known examples illustrate the application of (1.7). 

[] 

EXAMPLE 1. 

T(x) = x/(1 - x )  (mod 1), aa-- x (x) = x-l, 

B(i)=[i/(i+l),(i+l)/(i+2)), i =0 ,1 ,2 , . - . ,  J = {0}, 

(fok)'(x) = (1 + kx) -2, 

2 (fo~)'(x) > x-~ 2 (1/(1 + kx) -  1/(1 +(k  + 1)x)) >�89 -~. 
k = l  k ~ l  

EXAMPLE 2. 

T(x) = tanx (rood ~') on ( -  7r/2,Tr/2), dd--~ (x) = sin -2 x, 

B (i) = (arctan (2i - 1)rr/2, arctan (2i + 1)~-/2), 

f;(x) = (1  

iEZ, J={O}, 

2 (/~ -> ~ 0r ~ = x-2 -> (4/r sin-2 x. 
k = l  k = l  
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2. Exactness and rational ergodicity 

It is well known that the transformations T E 3R are exact endomorphisms, 

i.e. 

n T " ~  ={~b,[0,1]} (mod0) (cf. [151). 

As the condition TB(i)= [0,1] (i E I) suggests, this is true for all T C  3-. 

THEOREM 1. Every T ~ 3 is an exact endomorphism. 

PROOF. Let ~ * = { B ( k ~ , . . . , k * ) : k ~ E l * ,  l<=i<=n} be the set of T*- 

cylinders of rank n. Define the functions nk(x), k => I, by 

n ~ ( x ) = j  r x ~ Z ~  ~t n ~j. 

Then n~ is defined a.e. on [0,1] and fulfils 

(T*)~(x) = T"~"(x). 

Let A ~ n~=~ T-"Q, i.e. for every n there exists a set A,  E ~  such that 

A = T-"A,, and let A ( A ) > 0 .  If Z E ~ ' *  and x E Z ,  then 

E( I~  II c*)(x) = ,  (A n Z)/A (Z)  = A ((T*) -k (A.,,x)) n Z)/A (Z). 

In view of (1.4) this implies 

(2.1) C-'A(A.~))<= E(1A II c A(A.~)). 

Let 

6(x)  = lim inf A (A.,(x)). 
k ~  

Since Vk=,~* = ~ (rood 0) it follows from the left hand side of (2.1) and the 

martingale theorem that 

1A(x)>=C-'6(x) a.e. 

The assertion of the theorem is proved if we show 6(x) > 0 a.e. To do this, let 

K = / x  E [ 0 , 1 ] : l i m E ( l a  I I~ ) (x )  = 1A(x)l .  
l 3 

Then )t (A O K)  = ~ (A)  > 0 and U~.0(T*)  -~ (A O K)  = [0,1] (mod 0) since T* 

is conservative and ergodic with respect to h.. Now let y = (T*)' (x) E A n K. 
The right hand side of (2.1) then yields 
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1 = la  (y) = lim E(1A II ff~)(Y) =< C lim inf A (A,,,~)). 

Hence it (A.,~y)) => e (y)  = e > 0 for all k _-> 1. In particular, ~(x) > 0 if t = 0. For 

t _-> 1 we argue as follows. Because of 

nk(y) = n ,+ , ( x ) -  n,(x), k >= 1, 

and 

we have 

A .  = Tk A. -k  (rood 0), 0 = < k < n ,  n = l ,  

Therefore  

Thus, 

it (T",~X)(A.~,))) => max it (T",~(A.~y) N B(i))) 
i E l  O 

max it (A.~y) n B(i)) 
i E 1  o 

-->  /2ttol. 

A (A.a~))-  -> e/2[Iol for k > L 

This completes the proof. []  

In [1] a conservative ergodic measure preserving transformation on a o'-finite 

measure space (X ,~ , / z )  is called rationally ergodic, if a set A E ~ of positive 

finite measure exists such that 

(2.2) sup ~ l a o r k / a . ( A )  cl~ <~,  
n>=l k = O  

= Y~=o/z(A N T - k A ) .  This condition implies that the sequence where a, (A)  "-' 

{(1/a. (A))Y~,2~ la  o T k : n => 1} is uniformly integrable on A or, equivalently, that 

the following ratio limit theorem holds for all A~, A2, C~, C z E A  n ~t of 

positive measure: 

A .... tx) = T'~X)(x)(A.~ty)) for every k => 1. 

Let  Io be a finite subset of I such that Z ~ o A ( B ( i ) ) >  1 -  e/2. Then 

max A (a.~(,)n B( i  )) > e /2 t lo I . 
i E l  0 
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(2.3) lim a. (A 1, CO/a. (Az, C2) = I~ (CO/iz (C2), 

where a. (A,, Ci) = (1/Ix(A,))E~2~olx(Ai n T-~C~) (i = 1,2) (cf. [1], [71). 

For an intuitive interpretation of (2.3) note that a,(Ai, C~) is the expected 

number of visits to the set C~ before time n when the process starts in A~. 

We shall show that in our case, (2.2), and hence (2.3), is valid for all 

measurable sets of positive measure which are bounded away from the fixed 

points xj, j ~ J. Let T E f f  and 

Then we have 

THEOREM 2. 

B (T) = {A ~ ~ : 0 < /x  (A)  < ~, A satisfies (2.2)}. 

[0,1]\ Uj~j(xj - e, xj + e) ~ B (T) for every e > O. 

PROOF. For T E f i r  the assertion is obvious. Hence assume J ~  O. Take 

n _->1 with D,+IC_ Uj~j(x j -e ,  xj+e) and put A - -U~=lBk.  Since A EB(T)  
implies A ' E  B(T) for every measurable subset A '  of A with positive measure it 

suffices to prove A E B(T). As can be seen from (1.6), there are constants 

d2 --> d~ > 0 such that 

Therefore,  

d, < d/z < d2 a.e. on A. 
= d)t = 

E 1A~ dtz = I~(A n T-'A O T-iA) 
k =0  i = 0  / = 0  

n - 1  n - 1  

~2d2 E ~ A ( A  NT- 'A  AT- 'A) .  
i = 0  i=i 

Let i _---0 be fixed and 

a = {k,+, = (k , , . . . , k ,+ , )~ / " '+"  :B(k,+,)C_A n T-'A}. 

Since I T"(x)l T'(x) -2 is bounded there is a constant M = M(n) such that 

(2.4) ess sup to(k,)(x ) <-<_ Mess inf to( k,)(x ) 
x~IO, l] x~[O, ll 

for a l lk ,  E I ' , l < = t < = n .  

If k,+, E a ,  then either k,+,EI\J or (k,+~,...,k,.,)=(j,...,j,k), j ~J, k~j ,  
for some s E {2,. �9 ", n }. Hence there exists an index t, i + 1 =< t =< i + n, such that 

(k , , . . . ,k , ) - - (k*, . . . ,k*) ,  k, E I*, l<=i<=r. 
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Taking into account that 

to(k,+,)(x) = to(k,,..., k,)(fk,+, ... k,..(x))to(k,+,,..., k,+n)(x) 

we get from (1.4) and (2.4) 

ess sup to (k,+,) (x) <= CM ess inf to (k~+,) (x).  
xa|O, tl x~10, q 

Therefore  we obtain for ] > i + n : 

A(A n T-'A n T-JA)= ~ A(B(k~+.)M T-~'+"~(T-U-'-"~A)) 
Iti~.nEo~ 

<= CM ~ A(B(k,+.))A(T-~J-'-"~A) 
I<i+nEc~ 

= CMA(A O T-'A)A(T-~J-'-"~A). 

Now let B(a,), B(b,)C_A. Then 

A (B(a.) n T-U-~ ~. 
(kn+ I ,.-.,kj_i)Et j - i -n  

_-> M 'A (B(a.));~ (T-e-'-')B(b.)). 
Summation over a, and b, gives 

A(A n T-~J-OA )>= M-Z A(A )A(T-~-'-"~A ), 

hence 

a (B  (,,., k . . .  ,- �9 �9 kj_,, b. )) 

Isr. J. Math. 

A(A n T-'A n T-SA )<-<_K~A(A n T- 'A )A(A O T-O-~ ) 

for ] > i + n, where Ks = CM2A(A) -~. For i = j  < i + n, 

h (A n T-'A n T-JA)<= A (A n T-'A) 

<- K2A(A n T- 'A )A(A n T-~176 ), 

where KZ ~ = m i n { h ( A  n T - ~ A ) : 0 =  < i  = n}. 

Putting K = max{K~,K2} we conclude 

1A~ k dtz = 2 d ,  d2K 2 21.L(A n T- 'A) tz (A N T-U-~ 
\ k =0 i=O j=i  

<= 2d ?2 d2Ka,, (A )Z. [] 

J. Aaronson has shown in [1] that the order of magnitude of the sequences 

{an (A)} is the same for all A E B(T), and therefore an isomorphism invariant 
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for rationally ergodic transformations, called the asymptotic type of T. For our 
transformations it seems easier to consider the minimal wandering rates, which 
will be studied in the next section. We refer to [3], w for general results 
concerning the connection of the asymptotic type and the minimal wandering 
rates. 

3. Wandering rates 

=/x(U~=oT A), A ~ ,  be the Let TEff\~-R be fixed and let L,~(n) . -L -k 
wandering rate of the set A (cf. [3]). Furthermore, let 

E ( T ) =  U { A ~ : A ( A ) > O ,  AC_[O,1]\ U ( x j - e , x , + e ) } .  
e>0 j E J  

THEOREM 3. LA(n)- LB(n) (n---~=) for all A,B EE(T). 

PROOF. Let A = [O,1]\Ui~jB(j,j). Then 

hence by (1.6), 

n - I  

I,..J T-kA =[0,1]\ I,.J B( j , . . . , j ) ,  
k =0 j E J  

n + l  

L.,(n)=.( u Jf:+l(|) (x)dt (X) } 
(3.1) 

x-X, dx+ [',"' x-x,  , 
Jr:o) x - f ( x )  Jt7+'(,) X S [j(x)aXj" 

(Here ]~ denotes the continuous extension of (TjB,,) -1 to [0, 1].) 
Let first B C_ A, A (B) > 0. Taking into account that 

n--I n 

T-~A=A U I,.J I..J ~ B(j,...,j,i) 
k=0 jEJ i~j k ~ 2  

k 
we get 

n--1 ) n--1 n--1 

I..) T-kA \ I.J T-kBC_A\BU U I.J IJ (B( j , . . . , j )  
k=0 k=0 j~J k=l i~  i 

N T-k(B(j,i)NB~)) k 
1.1-1 

C_A\BU I,.J ~ B( j , ' . . , j )NT-~(A\B) .  

k 
Hence, applying (1.6) again, 
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(3.2) 

La(n)<=LB(n)+ tz(A \ B ) +  ~ ~. (f~(x))(f~)'(x)dx 
j E J  k= l  \B 

f A / ~ j  n - I  <- L , (n )  + c2 k~,= ~ gj(f~(x))(f~)'(xldx, 
\B " = 

where gj (x) = (x - xj)/(x - fj (x)), x E [0,1] \ {xj }. 

Let j E J be fixed and xj < 1. By condition 3 of section 1 there exists a number 

r/, 0 <  r/-< f j (1 ) -  x,, such t ha t / ;  is decreasing on (xj, xj + rl). The derivative of gj 

is given by 

(L g~(x) = ( f~ (x ) - f ; ( t ) )d t  / ( x - ~ ( x ) )  2, 

which shows that g~(x)<O for xE(x i ,  xj+Tl). Hence the function 

Z~-~ogj(f~(x))(f~)'(x) is decreasing on (xj, xj + rl), and we obtain 

n-1  f/i~ n - I  
(x - h ( x ) )  ~'. gj(/~'(x))(/~)'(x)<-_ ~, g~ff~(t))(/~)'(t)dt 

k=O (x) k=O 

. - I  i/~(x) = ~, g/ft)dt 
k=0 Jt~+'(x) 

< (6(1) 
= at,tx) gi(t)dt 

for x E (xi, xj + r/) and n -> 1. 

Now choose N = N(j)  => 1 such that i f ( x )  ~ (xj, x~ + 77) for all x ~ (xi, 1), and 

d ( j ) > 0  such that f f ( x ) - f f+ l ( x )>=d( j ) - I  for all x E A N ( x j ,  1). Since 
N--I Zk=ogj(f~(x))(f~)'(x)<=c(j) on A for some constant cO) we get for x C A  N 

(xj, 1) and n > N, 

n --1 n --1 

~--o g'( / ;  (x))(f~)'(x)_-< c(j)+ ~=,~ g,(f; (x))(/~)'(x) 

n - N - 1  

= < c O ) +  E 
k =0 

(6 o) 
<= c( j )+ d(j)  ~tTtx) gj(t)dt 

(6o) gj(t)dt, <= cU) + dq) j:,~2,,) 

since x E A N (xj, I) implies f~ (I) _-< x and hence f~'+2(I) _-< f,(x). In view of (3.1) 
we get 
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n - I  

(3.3) ~ gj(f~ (x ))(f~)'(x ) <= c(j) + d(j)c ;' LA (n + 1) 
k = 0  

for all x E A fq (x~,l) and all n _-__ 1. 

Applying the same argument to x C A  N (0,xi), if x, > 0 ,  we see that (3.3) 

holds for all x ~ A (with possibly larger constants). Since J is finite, 

n I 

~, ~g, ( f~(x) ) ( f~) ' (x )<K(l+LA(n+l)) ,  x ~ A ,  
jCJ k = O  

for some constant K, and (3.2) implies 

This shows that 

LA(n)<= LB(n)+ Kc2(1 + LA(n + 1))h (A \B).  

lim LB(n )/ LA (n ) >- lim(LB(n)/(LB(n ) + SIx (B )))(LAnB, (n )/ LA (n)) 

>- 1 - -  c 2 K A  (A \ Bs) for all s > 1. 

Taking into account that A(A \ B s ) ~ 0  as s- .oo we see that 

l imLB(n)/LA(n)=l for all B C_ A with h ( B ) >  0. 
n ~  

Now let B E E(T)  be arbitrary. Then 

A N T-2B C_ T-2B C 
N 

I,.J T-kA 
k = 0  

for some N >= 1. 

Since h (A N T -2 B) > 0 and Ls (n) = L T-2B(n) <= LA (n) + NIx (A) we conclude 

1 = l im LanT-2S (n)/LA'(n) < l imLB (n)/LA (n) 
r t ~  

=< lira LB (n )/ LA (n) <= lim (La (n ) + NIx (A ))/ LA (n ) = 1. [] 

From a probabilistic point of view the statement of Theorem 3 may be 

interpreted as follows. Let 0 <  Ix (A)<  oo and n(x)= min{n _-> I : T "  ( x ) E  A}. 

Define the stopping time r, by 

f n ( x ) ,  if n(x)<= n, 
%(X) [ n, if n ( x ) >  n, 

(3.4) lim L~(n)/LA(n)>= 1 - c2KA(A \B). 
s 

Now let Bs = {,3 k ~,, T -k B. Then LB5 (n) =< Ln (n) + six (B), and we get by applying 

(3.4) to A f3 Bs, 
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i.e. the process (Tx, T2X, "" ") stops the first time it reaches the set A but after n 

steps at the latest. Then the expected number ma (n )  of steps when starting in A 

is given by 

mA(n) = (1/tx(A)) fA r,(x)dtz(x) 

= (1//z(A)) ~ / z ( { x  E A  : n ( x ) -  k}) 
k = l  

n - 1  

= (1/tz(A))(l~(A)+ ~,/x({x E A  ~ : n ( x ) =  k})) 
k = l  

= L~ (n ) /~  (A).  

Hence the theorem asserts that mA(n)/ma(n)---~(B)/t.~(A) as n ~  for all 

A , B ~ E ( t ) .  
We shall call the rate of growth of the sequences {LA(n)}, A ~ E ( T ) ,  the 

wandering rate of T. By {w,(T)} we denote any sequence for which w , ( T ) -  
LA(n) (n---~oo) for one - -  and hence for all - -  A ~ E ( T ) .  

PROPOSITION. Let T,, T2E J'\  ~-R be weakly isomorphic via ~b : T , ~  T2 and 
~b: T2---~ T~, where/z~o~b-~ = c/x2 (c >0).  Then, 

w,(T,) ~ cw,(T2) as n.-.-~oo. 

PROOF. Choose A EE(T2) and B EE(T1) with B _C ~b-l(A). Then, 

) LB(n)<-L*-'(A~(n)=I ~, U T l k ~ - ' ( A )  
k=O 

( )) =1.~2 rb -~ U r~ ~A =cLA(n), 
k = 0  

hence lira w, ( r, )/ w, (T2) = lim LB ( n )/ La ( n ) <= c. 
On the other hand, tx2o~ -~= c ' ~  for some constant c'. Since TI, T2 are 

rationally ergodic we know from [1] that c' = c -~. Therefore the same reasoning 

as above yields 

lim w.(T,)/w.(T2) = 1/(lim w,(r2)/w,(r,))>= c. [] 

Our next goal is to calculate the wandering rate of transformations T ~ f f  \ 5r, 

admitting expansions at the critical fixed points. We shall proceed by stating five 

lemmas, the second, third and fourth of which are of some independent interest. 

The proof of Lemma 1 is a standard e-8-argument, and is therefore omitted. 
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LEMMA 1. Let f, g : ( a , b ] ~ R  be nonnegative and integrable on [a + ~,b] for 

each ~ >0,  f~fdh =oo and f ( x ) - g ( x )  as x---~a. Then, 

h ~ gdh as y --~ a. 

LEMMA 2. Let f :  [0, r/]--*R ( r / >  0) be differentiable and concave satisfying 

0 < f ( x )  < x, 0 < x <= 71, and if(0) = 1. Let g :[0, r/]---~R be nonnegative and 

bounded such that the function g ( x ) / ( x - f ( x ) )  is decreasing on (0, r/]; let 

aoE(0,  r/], ak =fk(ao)  (k _-> 1). Then, 

(a) if fgg(x ) / (x  - f ( x ) ) d x  < 0% E~=og(ak) converges; 

(b) if f g g ( x ) / ( x - f ( x ) ) d x  --0% f~.g(x) / (x  - f ( x ) ) d x  ~ E~-~og(ak) as n--~oo. 

PROOF. By the conditions imposed on f the sequence {RE} is decreasing and 
l i m k ~ a k  = 0. Taking into account that 

a~+,-f(ak+,) = f ( a ~ ) - f ( a ~ + , )  = f ' ( ~ ) ( a ~  - a~+,) 

for some ~k E (ak+~,ak) the concavity of f implies 

Therefore, 

(ak - ak+,)/(ak+~ - f(ak+,)) < 1/f'(ak), k >= O. 

g (ak) = {g (ak)/(ak -- f(ak ))} (ak - ak +,) 

<= g(x) / (x  - f (x ) )  dx 
J a k + l  

<= {g(a~+l)/(ak+l - f(a,+O)} (ak -- ak+~) 

<= g(a~+~)/f'(a~ ) 

for k -> O. Summation over O, 1 , . . . ,  n - 1 then yields 

a 0 

k~, ~ g(ak) g(x) / (x  - f ( x ) ) d x  
n 

n - I  

<= ~ g(ak+l)/f'(ak) (n >= 1). 
k =0  

From this the first assertion follows immediately. 

If fgg(x)/(x-f(x))dx = ~ ,  the upper inequality shows that E~=og(ak) di- 

verges. Since l i m k ~ f ' ( a k ) =  1 and g is bounded 

n - 1  n--1 

g(ak+O/f'(ak)-- ~ g(ak) (n--.oo) 
k = 0  k=O 
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holds true. This completes the proof. [] 

If f satisfies the conditions of Lemma 2, we may always take g(x)=-x and 

g(x)  = 1. The first yields 

x/(x  - f ( x ) ) d x  ~ ~ a~ (n---~) ,  if x/(x - f ( x ) ) d x  =o0. 
n k = 0  

The second gives the interesting relation 

f " dx 
o x - f ( x ) - n  a s n ~ ,  

which determines implicitly the order of magnitude of the sequence {an}. 

COROLLARY. Let f satisfy the conditions of Lemma 2 and let f ( x ) =  

x - axP§ + o(x P§ as x ~ O  (a > 0 , p  >0) .  Then, 

an ~ 1/(apn )'lP as n ~ o0. 

PROOF. Using Lemma 1 we get 

n - f [  dx f [  dx a~P- ~I-P aX [] 
. x - f ( x )  ~ ax "+t ap ap 

LEMMA 3. For T E 3-R there exists a version of dtz/dA which is continuous on 

[0,11. 

PROOF. The proof is a modification of the argument used in [8], theorem 8, 

where the assertion is proved for finite-to-one transformations (see also section 7 

in [8]). 
Let I = { 1 , 2 , . . . }  be finite or infinite. From T( fk (x ) )=x ,  x E(0,1),  and 

condition (4) imposed on T we obtain 

f~(x)l = IT"(fk(x))l< (0,1), k > 
f 'dx)  T,(fk(x))2 = M, x E = 1. 

For ( k l , . ' . , k n ) E I "  and x E(0,1) ,  

" x)l<__ ~ , + f : (x  
' x ~ {~ x f~,,...,~.( ) - , ~ ,  f , , ~  .... . . . .~( )) 

< = M . ( l + p + . . . + p n - ~ ) < = M / ( 1 - p ) = K  (p < 1). 

In particular, f~, ... ~ is bounded on (0, 1). Together with the other conditionsr 

T this implies that the functions f~,....,k, have C'-extensions to [0, 1]. 

By the mean value theorem, 
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i X �9 f;,, , ~ o ( )  logf~, ... k~(y ) =<K for x,y E [0,1]. 

Hence there exists a constant C such that 

(i) ( 1 / C ) A ( B ( k , . . .  ,k,))<-- f'k, ... k.(X)<= CA(B(k~,. ." ,k,)),  x ~ [0,1], and 

(ii) Ifz',,, o(x)l <= C A ( B ( k , , . . . , k , ) ) ,  x E (0,1), for all ( k t , . . . , k , ) E  I" and 
all n ~ 1. 

Now let the functions h,, n => 0, be defined on [0,1] by 

h0 = 1, h.+, =~. (h .  oh).f~ (n ~0), 
k ~ l  

i.e. h ,+ l=Ah , ,  where A is the Frobenius-Perron operator on L~([0,1],A) 

associated with T. Then, 

h , ( x ) =  ~ - . .  ~ f'k,,....k~(X), x E [ 0 , 1 ] .  
k l ~ l  kn__~>l 

From (i) it follows that these series are uniformly convergent on [0, 1]. Hence the 

functions h, are continuous on [0, 1], and 1/C <= h. <-_ C. By (ii), 

Ifk,,'...k~(x)--fk,,'".k~(y)l---- C" tX -- Y I" A(B(k, , .  �9 �9 k,)) 

for all (k,, .  �9 k,) ~ I n, hence 

[h~(x) -hn(y) [ -<  C . r x - y ]  for all x, y E [0, 1] 

and all n _-> O. This implies that the sequence 

1/n) 
i = 0  =1 

is equicontinuous on [0,1]. By the theorem of Arzelh-Ascoli there exist a 

subsequence (n~) and a continuous function h such that 

n . - I  

g , , :=( l /n , )  ~, hj--.->h uniformly on [0,1] as i---~o~. 
1=0 

Since Ag., =gn, +(1 /n , ) (h . , -1 )  and h., _-<C, Ag . , -+h  as i---~oo. On the other 

hand, from 

IAg.,(x)- Ah(x)] <= ~ fg.,(h(x))- h(fk(x))l "f'k(X) 
k ::"l 

_-< C-  max ]g , , ( x ) -h (x ) l  
xc[o, ll 
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we see that Ag,,--*Ah as i---~. Therefore Ah = h, i.e. h is a continuous version 

of dtz/dA (with 1/C ~ h <= C). [] 

LEMMA 4. Let T E J-\ JR. Then there exists a continuous function g = g, on 
[0,1] such that 

g(x)  x-x  
x - f i ( x ) '  x~[O, 1l\{xi:j~J}. 

PROOF. By (1.3) the invariant density can be written in the form 

~-~(x)= h*(x )+  2 ~ h*(f~(x))(f~)'(x), 
i~J k = l  

where h* is a version of the invariant density of T*. According to Lemma 3 we 

may suppose h* to be continuous on [0,1]. Define g on [0,1]\{xi : j  E J} by 

x, 

with this version of h* 

Let c > 0  be a constant such that h*(x)<-c for x ~[0,1],  and let ] ~ J  be 

fixed, x~ < 1 and 0 < e < 1 - x~. Choose 0 < 7/< 1 - xj, N => 0 and d > 0 such that 

f~ is decreasing on (xj, xj + 71), 

f~(x)E(xj, x, +7/) for all x E (xj,1], 

and 

i f (x)  - if+' (x) >= 1/d for all x E (xj + e, 1]. 

As in the proof of Theorem 3 integration over the interval [)~(x),x] yields 

( x  - <= k(x)S _ x j  
k = 0  

for all xE(xj, xj+71) and all s=>0. Therefore we obtain for n = N  and 

x E(xj +e ,  1] 

h*(f~(x))(f~)'(x)<=c ~ (fr+~)'(x) 
k = n  k=O 

Applying the same argument to the left hand side of xj, if x~ > O, we see that the 

series 2;~ =1 h * (J~ (x)) (f~)'(x) is uniformly convergent on [0,1 ] \ (x~ - e, xi + e ) for 

every e > 0  and every j EJ .  Hence g is continuous on [O, 1]\{xj : j  EJ} .  
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It remains to show that lim, ~,jg(x) exists for each j E J. Let j E J be fixed, 
and choose e > 0, ~ > 0 such that 

[ h * ( x ) -  h *(xj)[--< e 

Since [ [~(x) -  xi[ =< J x - xi[ this implies 

Ih*(f~(x))-h*(xj)l<-_e for I x - x j l < $  

Therefore,  

for [x-xjJ-<_ & 

and all k -> 1. 

for J x - x~ I =< & and hence 

limj k~=l h *(f~ (X ))(f~)'(X ) / ( k~=l (f~)'(X))=h* (x i). 

Taking into account that the functions X~=t h*(f~(x))(f~)'(x) are bounded on 
B(j )  for all i C J \ { j )  and 

zo 

lira ~=t 0~)'(x) = o0 
x ~ x  i = 

(cf. [20]) we obtain 

Finally, by the lemma in [20], 

lim x - /~(x)  ~ (/~) '(x)= 1. 
x-~ x~ X -- X I = 

Hence 

exists. 

LEMMA 5. 

and 

lim g ( x ) = :  g(x~) 
x ~ X  i 

Let g, h* be as in Lemma 4. Then, 

I E J  k = 1  

, xl'-t XI--Xi 
h *(xj) = gtxj) l l x - ~ IxX' i~] j .li~ i!  

i#i 

[] 

as rl --~ oo, 

i ~ J .  
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PROOF. 

, ~  ,, X - -  X i 

aa--~ (x)-  tXJ) x -~(x) h 

Hence applying Lemma 1 we get 

w. (T) - LA (n) 

(-' ) 
=/x U T-kA  

k=O 

M. THALER 

Let A = [0,1]\I,.JjEsB(j,j). By Lemma 4, 

as x---> xj. 

Isr. J. Math. 

we obtain 

p = max{pj : ] E J}, 

Jo ={j  e / : p j  =p} ,  

e(x)= {1, if x ~{0,1}, 

2, if O<x <1, 
c, = 1-I Ix~ - x, l-P'h(xj), 

i E J  
i # i  

i ~ J  j E J  

~ x j, fT.) x - x j  . '~  x - [j(x) ax).  

From this the result follows by applying Lemma 2 (with g(x)=-x)  to f ( x ) =  

x j - ~ ( x j - x )  resp. f ( x ) = [ j ( x i + x ) - x j .  The formula connecting h*(xi) and 

g(xj) results from the proof of Lemma 4. [] 

Now assume that for each j E J 

T ( x ) = x - * - a j ( x - x j ) ~ + l + o ( ( x - x j ~  j§ asx--->xj, 

or equivalently 

[ , (x )=x-7-a j (x-x j )~ ,+~+o((x-x~)  p,+') asx---~xj, 

where at > 0, pj ~ N. 
Then 

dd-~A(x)=~lx-x,[-PJh(x) ,  

where by Lemma 4, h(x)  may be assumed to be continuous on [0,1]. 

With the notations 
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T H E O R E M  4 .  

PROOF. 

(,Z 
p - l ~  

By the corollary to Lemma 2, 

f;(1) - f ;(0) -- ( f ; f l )  - x,) + (x, - f ;  (0)) 

e (xj)(ajpjk) -''p, 

as k -~  o% hence 

2 (f~(1)- f~(O))- { 
k=l  

Taking into account that 

i fp  = 1, 

i f p > l .  

e(xj)a;'logn if p, = 1, 

n 
if pj > 1. 

h*(xj) = h(x~)ajy I Ixj - x, ] -p' 
i# j  

the assertion now follows from Lemma 5. Notice that the numbers pj are even, if 

0 < xj < 1. Hence Jo = J C_ {0,1} when p = 1. [] 

Before giving some examples we indicate a possible extension of the definition 

of the wandering rate to more general transformations. 

Let (X,~, tz)  be a ~r-finite measure space, and let T : X ~ X  be measure 

preserving, conservative and ergodic. Motivated by the proof of Theorem 3 we 

define the class W(T) by 

W(T)={ A  E ~ : 0 < / z ( A ) < % L ~ ( n ) -  La(n) as n ~ 

for all B E A fq 3~ with p. (B) > 0}. 

Then the following assertions hold: 

(i) A E W(T) if[ 0 < / z ( A ) < o o  and limLB(n)/LA(n)>= 1 for all B E N  with 

(ii) LA(n) -LB(n)  as n-~oo for all A,B E W(T), 
e 

(iii) if T~, 7'2 are isomorphic by 4):T~-~ T2, then & ( W ( T 0 ) =  W(T2) and 

L a ( n ) - c L e ( n )  as n- - -~  for all A E W(T~), B E W(T2). 
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Hence, for all T with W(T)~  r the wandering rate can be defined as the rate 

of growth of the sequences {La (n)}, A ~ W(T). 

(1) T ( x ) = { x i ( 1 - x ) ,  x~B(O)=[O,1/2], 

- 1 / x ,  x ~ B 0 )  = (1/2, 11, 

dd-~A (x ) = 1/x (1 - x). 

Here we have J = J o =  {0,1}, p = 1, h ( 0 ) =  h ( ] ) =  1, hence 

w,(T)= 21ogn, 

as in this case, can easily be verified also by a direct calculation. 

(2) Tx - t a n x ,  x E R ,  dlz(x)/dA = 1/x 2. 
Consider S = ~bT~b -l where ~b(x) = (1/r arctan x +�89 Since 

S ( x )  = x + - y  x - + . . .  

on B(0)=  (�89 arctan 7r/2, �89 + (l/~r) arctan zr/2), and the invariant density 

of S is given by 

~-/~A (4~-'(x))(~ ' ) ' (x)= 1r/cos27rx = h(x)/(x _�89 with h(�89 1/~', 

we have p = 2, co = 1/r e (~) = 2, ao = 7r2/3. Thus, 

w,(T) = w,(S) = 2 V~n'n/3. 

(3) Tx = x + EL,p , / (n ,  - x ) ,  x e l l  (p~ >0),  dl~/d~ = 1. 
By transforming on [0,1] with ~b(x)---(l/rr) arctan x +�89 one gets a transforma- 

tion S with critical fixed points Xo = 0 and xl = 1, and invariant density 

(6-1)'(x) = 7r/sin 27rx = h(x)/xZ(x - 1) z, h(0) -- h(1) = 1/7r. 

The expansions at xo and x, are 

S ( x ) = x  +alr2x3+ ,.. resp. S ( x ) = x  +alr2(x-1)3+ . . . ,  

where a = E~=lps. Hence, w.(T) = 2~/2an. 
As proved in [2], a , ( A ) / l z ( A ) -  (1/Tr) 2V2n/a for A E B(T). Thus theorem 3 

in [3] may be applied to confirm our result. 

EXAMPLES. 
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(4) We close with an S-unimodai function taken from [19] (cf. also [6]): 

1 - 5 x  2 
T(X)=l+3x2 ,  x E [ - 1 , 1 ] ,  

~ (x) = (1 + x) -~ (1 - x2) -'/2. 

Consider S = ~bT~b -t on [0,1], where th(x)= ( l / I t )  arccos ( -  x). The expansion 

of S at the critical point 0 is given by 

S(x) = x + (Tr2/4)x 3 + - - ' ,  

and 
d/~ oth-' 

dA (x)--  ~ r / (1 -cos~rx)=  (1/x2)h(x) with h(O)=2/w.  

Thus, wn(T)= X/2n. 

We should note that in Examples (3) and (4) IS'(x)l is equal to 1 for points x 

different from the fixed points xj, j E J. This difficulty, however, is easily 

removed by considering (S*) 2 instead of S*. 

4. Entropy and McMiilan's Theorem 

Let us first recall the definition of the entropy of conservative transformations 

as given in [11]. Let ( X , ~ , p )  be a o--finite measure space and T : X - - * X  be 
conservative, ergodic and measure preserving. If A~, A2 are sets of positive finite 

measure, it follows from TA, = (TA,uA~)A, and the entropy formula for induced 

transformations that 

p.(A~)h(TA,) = tx(A~ tA A2)h(TA,uA2) (i = 1,2), 

where h denotes the entropy with respect to the corresponding normalized 

measure. Thus the number 

h(T, lx)=ix(A)h(TA),  0 < / z ( A ) <  oo, 

is independent of A. It is defined as the entropy of T with respect to/~. Note that 

h(T, lz) = lz (X)h(T)  i f / z (X)  < oo. 

For T ~  JR, h(T,/z)  is given by Rohlin's well-known formula 

(4.1) h(T,/z)  = f j  log T'(x)dlz(x) (cf. [15]). 

By McMillan's Theorem, if h(T, tz) < ~,  
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(4.2) - lim (1/n)logA(B(k,(x)))= h(T,l~)/g([O,1]) a.e. 

where B(k,(x)) is the cylinder of order n containing x. 

We shall show that (4.1) is true for all T E  J-, and also (4.2) when suitably 

modified. Furthermore,  (1.6) will yield a simple criterion for the finiteness of 

h(T, lz ). 
Let T E 3-, and TA., be an auxiliary transformation as defined in section 1 such 

that the sets D, are unions of cylinders of order n + s for a fixed s E 

{ - 1 , 0 , 1 , 2 , - . . } ,  i.e. 

D.= [,.J B(k.+s) (k.+~=(k,,...,k.+s)), n ~ l ,  
k n + s ~ A  n 

for a suitable index set A. (D~ = [0,1] for s = - 1). 

Let v be invariant for Ta,., u ~ A, and let g be given by (1.3). Then 

. = 1  k n + s E A  n 

where 

dl~ 
,o~ ( k, )(x ) = ~ tf~, (x )),o(k, )(x ), 

dv 
o,o(/~o)(X) = 2-~- (x). 

Under these assumptions we have the following 

LEMMA. f~,log T'(x )dtz(x ) = f A logTS,,, (x )du(x ) 

PROOF. Assume one of these integrals is finite. Then 

f log(T~+l)'(x)dv(x) is finite. 

t_>l ,  

To prove this, let first the right hand integral be finite. From 

s + l  t < s + l  ! (T  ) (x) = (Ta,,)  (x) a.e. on A 

and the fact that v is invariant for TA.. it follows that 

f~ l~ l~ 

= ,~177 IogTL.(T~..x)dv(x) 

=(s  +1) log r A , . ( x ) d v ( x ) <  . 
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If the left hand integral is finite, 

f/ f ~ >  (s + 1) logr ' (x)dg(x)  = log(r~+')'(x)dl~(x)" 
) 

>= fA l~ IA l~ 

since i x ( E ) _  -> v(E)  for all E E A  A ~ .  
This consideration justifies the following calculation: 

o ~ log T'(x ) dl~ (x ) 

= 

.~=1 ,.§ fo 1lOg T'(X )oo.,(k,.+~ )(x )dA (x) 

fD l~ 
n = l  . 

n = l  k = n  k 

= ~ f .  l~ (Tk)'(x)dv(x) 
k = l  k 

+ ~ f, (l~ T~+')'(T~(x))- log(T~+')'(x))dv(x) 
k = l  

= fA log Ts 

+ l~ iog(T~+')'(x)dv(x) 

= log T'a,n (x)dv(x). 
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[] 

then h ( T , / z ) <  oo, if and only if u; E L,(B(j) ,A)  for all j E J. 

- ~ A (B(i)) logA (B( i ) )<  o% 
i E !  

Now we can prove 

THEOREM 5. Let T E ft. 
(1) h ( T, tz ) = f~log T' ( x ) dlx ( x ) = v ([ O,1]) h ( T* ), if v is the invariant measure 

of T* and ~ ( E )  = E~=I v(T-kE N D~), E E ~ .  
(2) Let u j ( x ) = ( x - x j ) ( T ' ( x ) - l ) ( T x  - x )  -1, x ~ B(j),  j ~ J .  If  
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(3) I[ h(T, ix)<~,  then 

- lim logA(B(k,(x g(Tkx) = h(T, tx gdtx a.e. 

for all g ~ L,(/x), g =>0, f~,gdtz >0 .  

PROOF. (1) Let A = B(k) ,  k E I \ J .  Then 0 < / z ( A ) < o %  Ta E ~-,~(A) and 

/ZlAn~ is invariant for Ta. Hence by (4.1) and the Lemma, 

h ( T , ~ )  = fx(A)h(TA) = Iogr;(x)dl~(x)  = Iogr'(x)dl~(x). 
I 

If J = I, we get the result by applying the same argument to T 2. The second 

equality is also an immediate consequence of the Lemma. 

(2) Let /3, ~ > 0  satisfy /3(x - 1)=<logx - - x -  1 for 1 N x =< 1 + 7/. Choose 

e > 0  such that T ' ( x ) <  l + r /  for all x E B ( j )  with I x - x j l < e  and all j E J .  
Putting 

X, = I..J { x E B ( ] ) : l x - x j [ < e }  

we have 

h(T,.)= logr'(x)e.(x)+ Io.,,,x. log r'(x)d.(x). 

By condition (4) imposed on T there exists a constant c > 0  such that 

(l /c)A(B(i))  <= oo(i)<= cA(B(i)) a.e. for all i ~ I. Therefore, 

So' - l o g c -  ~,A(B(i))logA(B(i))~= Iogr'(x)d,~(x) 
i E l  

Hence by assumption 

logc - ~A(B(i ) ) logA(B( i ) ) .  

~o' log T'(x ) dA (x ) < ~. 

Since dtx/dA is bounded above on [O,1]\X, this implies 

fto.,j\x, log T'(x)dtt(x)  < ~. 

NOW, 

/3(T ' (x)- l )<=logT'(x)<=T'(x)-I  f o r x ~ B ( / ) N X , ,  
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hence 

c~[3 fs(j)nx, u'(x)dA(x)<= Ie(j)~x, log T'(x)dlx(x) 

<= c2 fB(~nx, u, (x) dA (x), 

where ct, c2 are the constants in (1.6). Taking into account that uj E L~(B(j),A) if 

and only if 

Ja uj (x)dA(x)<~,  
(j)nx~ 

the assertion is proved. 

(3) Let B = B(b) ,  b E I\J,  and S : [0 ,1]~[0 ,1]  be the first passage map with 

respect to B (see section 1, (iii)). As every S-cylinder is a T*-cylinder, (1.4) 

implies that S has an ergodic invariant measure u with density bounded away 

from zero and infinity. After a suitable normalisation of u, (1.3) holds and 

therefore / x (B)=  u([0,1]). Hence the Lemma implies h(T,I.L)=Ix(B)h(S). 
Letting 

n - 1  

j .(x) = ~ 1 , (Tkx)  
k = 0  

we have 

B(k.(x)) = B(k,  , ' . . ,  k'i.tx), * , " ' , * ) ,  

where the blocks /~j correspond to S-cylinders of order one, and the digits 
marked by * are different from b. Thus, 

- l o g  v(B(lc,, . . ., lcj.(x)))/j, (x ) <= - l o g  v(B(k. (x )))/j, (x ) 

<= - ((1", (x ) + 1)/j. (x))log u ( B ( k , , . . . ,  kj.tx)+,))/(j, (x) + 1). 

Taking into account that i i m . ~ = j , ( x ) =  ~ a.e. we get, by applying McMillan's 

Theorem to S, 

r t--I  

- l imlogu(B(k . (x ) ) )  ~ l.(r~x)=h(S)=h(r,~)/~(B) a.e. 
r t ~  k = 0  

Since u can be replaced by A the result now follows from the Chacon-Ornstein 

Theorem. 

If J = L then applying the same argument to T 2 and B = B(b,,b2), b, ~ b2, we 

see that 
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Because 

n - I  

- !im logA (B(k2.(x ))) ~. la(T2~ x )= 2h(T, Ix )/tx(B ) 
k=O 

a . e .  

n - 1  2 n - I  

2 ~ l s (T2kx)~  ~ l a (Tkx)  a.e. 
k = 0  k = 0  

the assertion is proved for the subsequence of even positive integers. The rest is 

a consequence of B(k2,+z) C B(k2,,+l) C B(k2,,). [] 

REMARKS. (1) From the proof of (2) it can be seen that h(T, lz) is infinite if 

-E,~,X(B(i))logA(B(i)) is infinite. If this sum is finite, it depends on the 

behaviour of T at the fixed points xj, j E J, whether h(T, lz) is finite or infinite. A 

sufficient condition for uj to belong to L~(Bfj),A) is, for example, that T is r 

times continuously differentiable in a neighbourhood of xj, r => 2, and T")(xj)~ 0 
for some i E {2,.--, r}. Intuitively speaking, this means that points near to xj do 

not move too slowly under iteration of T, or equivalently, that the wandering 

rate of T is not too large. Otherwise, as the following example illustrates, 

h (T,/z ) is infinite. 

Let / ( 0 ) = 0 ,  f (x )=x  +xZe -~/x, x > 0 ,  and let a ~(0,1)  be determined by 

/ ( a ) =  1. Define T : [0,1]---) [0,1] by 

f f(x), x E B(O) = [0, a] ,  
T(x) [ ( x - a ) / ( 1 - a ) ,  xEB(1)=(a,1]. 

Then Uo(X)=2+ 1/x~ L~(B(0),A), hence h(T,I.Q = oo. Note that the invariant 
density of T has an essential singularity at 0. In fact, 

dd-~A (x) = g(x)e'/X/x, g continuous and positive on [0,1]. 

Furthermore, by the lemmas of section 3, w. ( T ) =  g(O)n/log n. 
(2) If T has finite entropy, we define (adopting an idea from [1]) 

fe.(T) = w~(T)/h(T,t~ ). 

Then, if Tt, T2 are weakly isomorphic transformations with finite entropy, 

~n(T~) = ~n(T2) holds true. 

Clearly, {tbn(T)} is a still more powerful invariant. 

Consider, for example, the following two transformations: 
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I x / ( 1 - x ) ,  O<=x<-~, 
T,(x) = 

"<= x = dtz~ [ 1 ~ x - l ,  < 1 ,  dA ( x ) = l / x ;  

T2(x) = [ x/(1 X ) ,  

[ 2 - 2 x ,  

0 ~ x  =2,  

-~_<_x =< 1, 
d/z2 
d,k (x) = 2 / x ( 2 -  x). 

In both cases the wandering rate is equal to {logn}. 

Since T* is the continued fraction transformation it follows that h(T~,t ,~)= 

rr2/6 -~ 1.645 (cf. Theorem 5). On the other hand, 

( ,/2 log(1 - XO , s  dx 
h(T2,/*2) = - 4  x ( 2 - x )  ax +21og2 .j,, ,2 x (2 - x) 

f * l o g x  , 
= - 4  l _ x 2 a X  +log2.1og3 

/2 

= 7r2/2- log2. l o g 3 -  4 ~ 2-~2"+'~(2n + 1) -2 
n=O 

-~ 2.112, 

i.e. the 'normalized' wandering rates ~,,(Ti) and ff,(T2) are different. Thus the 

systems (TI,/*~) and (T2,/*2) are not weakly isomorphic. 

(3) We conclude by calculating the entropy of Tx = tan x, x ~ R. With the 

notations of Example 2 in section 3 we get 

and 

fO h(T,  l z )=  ~- logS'(x.) dx 
COS 2 "/rx 

= - 2zrff  dx log sin 7rx c~ 27rx 

fo = 2rr dx 

= 27r, 

@.(T) = (1/Tr) 2V'~n/3. 
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